
Operating Systems for
Reconfigurable Embedded Platforms:
Online Scheduling of Real-Time Tasks

Christoph Steiger, Herbert Walder, Member, IEEE, and Marco Platzner, Member, IEEE

Abstract—Today’s reconfigurable hardware devices have huge densities and are partially reconfigurable, allowing for the
configuration and execution of hardware tasks in a true multitasking manner. This makes reconfigurable platforms an ideal target for

many modern embedded systems that combine high computation demands with dynamic task sets. A rather new line of research is
engaged in the construction of operating systems for reconfigurable embedded platforms. Such an operating system provides a

minimal programming model and a runtime system. The runtime system performs online task and resource management. In this paper,
we first discuss design issues for reconfigurable hardware operating systems. Then, we focus on a runtime system for guarantee-

based scheduling of hard real-time tasks. We formulate the scheduling problem for the 1D and 2D resource models and present two
heuristics, the horizon and the stuffing technique, to tackle it. Simulation experiments conducted with synthetic workloads evaluate the

performance and the runtime efficiency of the proposed schedulers. The scheduling performance for the 1D resource model is strongly
dependent on the aspect ratios of the tasks. Compared to the 1D model, the 2D resource model is clearly superior. Finally, the runtime

overhead of the scheduling algorithms is shown to be acceptably low.

Index Terms—FPGA, partial reconfiguration, operating system, online scheduling, real-time.

!

1 INTRODUCTION

EMBEDDED computing platforms are composed of a
variety of different processing elements, memories,

I/O devices, sensors, and actors. The choice of processing
elements includes instruction-set processors, application-
specific fixed-function hardware (ASICs), and (re)configur-
able hardware devices. SRAM-based reconfigurable de-
vices, typically field-programmable gate arrays (FPGAs),
store the hardware configuration in static memory cells.
These devices can be reconfigured arbitrarily often with
reconfiguration times on the order of milliseconds.

SRAM-based FPGAs were introduced as high-end
devices for implementing random logic in the mid-1980s.
In the following years, FPGAs have found a number of
additional and novel uses in the design of embedded
systems. One example is rapid prototyping and emulation.
More recently, reconfigurable hardware is being used as an
ASIC replacement with much shorter time-to-market and
the novel ability to update hardware after product deploy-
ment. Today, the increasing densities of reconfigurable
devices and the trend to integrate them with processors,
memories, and special function blocks on configurable
systems on a chip (CSoC) [1], [2] advocate more dynamic
uses of reconfigurable hardware in embedded systems. A
higher degree of dynamics is further facilitated by partial

reconfiguration, a technique that allows us to reconfigure
only a fraction of the reconfigurable hardware resources
while the other part continues to execute [3].

Many promising application domains for reconfigurable
embedded systems combine high performance demands with
frequent changes of their workloads. Examples for such
application domains are found in wearable computing [4],
mobile systems [5], and network processors [6]. The
dynamics in these systems are caused by user requests
and packet flows in the communication networks. Mobile
and wearable systems additionally operate in changing
physical environments and contexts, which reflects in
different types of workloads. Consequently, neither the set
of functions nor the time at which these functions will be
executed is exactly known in advance. A classic system
design process with complete design-time synthesis and
optimization is no longer possible. The required degree of
flexibility paired with high computation demands asks for
partially reconfigurable hardware that is operated in a true
multitasking manner.

Multitasking reconfigurable hardware raises a number of
novel issues, ranging from programming models to runtime
systems. A programming model defines the executable
objects and their interaction and provides the developer
with a set of well-defined system services. A runtime
system efficiently operates the system and resolves conflicts
between executable objects. A programming model, to-
gether with a runtime system, forms a reconfigurable
hardware operating system [7], [8]. A reconfigurable hardware
operating system can be compared to embedded real-time
operating system (RTOS) kernels for microprocessors. Such
kernels have been industry standard for years and offer a
minimal programming model by specifying a set of objects,
e.g., tasks, buffers, semaphores, timers, and their possible

IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 11, NOVEMBER 2004 1393

. C. Steiger is with ESA/ESOC, Robert-Bosch-Strasse 5, 64293 Darmstadt,
Germany. E-mail: Christoph.Steiger@esa.int.

. H. Walder and M. Platzner are with the Computer Engineering and
Networks Lab, Swiss Federal Institute of Technology (ETH) Zurich,
Gloriastrasse 35, 8092 Zurich, Switzerland.
E-mail: walder@tik.ee.ethz.ch, marco.platzner@computer.org.

Manuscript received 1 Dec. 2003; revised 11 Apr. 2004; accepted 8 June 2004.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TCSI-0251-1203.

0018-9340/04/$20.00 ! 2004 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: University of Florida. Downloaded on March 19, 2009 at 17:21 from IEEE Xplore. Restrictions apply.

interactions. The main abstraction is the introduction of a
smallest unit of execution, which is mostly denoted as task
(alternatively, the smallest unit of execution is called
process or thread).

Our long-term goal is to develop an operating system for
reconfigurable embedded platforms by building the same
abstractions for partially reconfigurable hardware as an
RTOS builds for microprocessors. Besides enabling hardware
multitasking, the benefits of such an operating system are
increased productivity and portability. The abstractions of
system objects and tasks enable the reuse of tested and
reliable code and circuitry, which can considerably speed
up development cycles and shorten time-to-market. Appli-
cation ports are greatly simplified, provided the operating
system is available on different target platforms. Even-
tually, all processing elements of an embedded reconfigur-
able platform should be managed by one operating system
that deals with software tasks running on a microprocessor
and hardware tasks running on reconfigurable hardware.
Tasks that are available for both software and hardware
facilitate dynamic system repartitioning [9].

Reconfigurable hardware operating systems are a rather
new line of research, where only a few issues have been
addressed yet. In this paper, we first discuss conceptual and
practical aspects of reconfigurable hardware operating
system design. Then, we concentrate on the runtime
functions of such an operating system. The main contribu-
tion of this paper is the development and evaluation of
heuristics for online scheduling of hard real-time tasks to
partially reconfigurable devices. The proposed scheduling
heuristics are applicable to both commonly used reconfi-
gurable resource models, the 1D and 2D area model.

The remainder of this paper is structured as follows: In
Section 2, the basic operating system abstractions—task and
resource models—are presented, followed by a survey of
related work and a discussion of the limitations of current
FPGA technology. The design of our reconfigurable hard-
ware operating system is outlined in Section 3. Section 4
defines the online scheduling problem and presents two
heuristics to solve it. An experimental evaluation of the
proposed heuristics based on synthetic workloads is done
in Section 5. Finally, Section 6 concludes the paper.

2 MODELS AND LIMITATIONS

This section first presents the basic models for hardware
tasks and reconfigurable devices that are being used for
conceptualizing and constructing operating systems for
reconfigurable platforms. Then, we review related work in

the area. Finally, we discuss the limitations of task and
resource models when it comes to practical implementation
in currently available technology.

2.1 Basic Task and Device Models
A hardware task is a synthesized digital circuit that has
been preplaced and prerouted. The task is stored in a
position-independent way and can be relocated to different
locations on the reconfigurable device by the operating
system. Hardware tasks have several characteristics. The
functional characteristic captures the task behavior and is
not visible to the operating system. The structural and
timing characteristics, however, are exposed to the runtime
system for scheduling and placement.

The main structural characteristics are size (area) and
shape.Hardware taskshave a certain area requirement, given
in numbers of reconfigurable units (RCUs). The shape of a
hardware task is mostlymodeled by a rectangle including all
RCUs as well as the routing resources used by the task.
Compared to more complex shapes, such as polyominoes
[10], [11], rectangular shapes simplify task placement.
However, rectangular shapes also lead to internal fragmenta-
tion, i.e., the unused area inside the rectangle.

The main timing characteristic of a hardware task is the
clock range at which the task can run. Design tools usually
report an upper bound for the clock rate. A task may,
however, require a specific clock rate, for example, to derive
a timer object that relates events to physical time. A task
might further require a clock rate in a certain interval to
preserve timing requirements of I/O devices or memory.
Further timing characteristics, that might or might not be
known in advance, are the number of clock cycles to execute
and the deadline of a real-time task.

The complexity of mapping tasks to devices depends
heavily on the area model used. The two main area models
are the 1D and the 2D model shown in Fig. 1. In both
models, the reconfigurable device is represented by a
rectangular area of RCUs. A part of the reconfigurable
resource is reserved for operating system functions (de-
noted as operating system area in Fig. 1). The remaining
part is the hardware task area. In the simpler 1D area
model, tasks can be allocated anywhere along the horizontal
device dimension; the vertical dimension is fixed and spans
the total height of the hardware task area. The 1D area
model leads to simplified scheduling and placement
problems. However, the model suffers from two types of
external fragmentation. The first type of external fragmenta-
tion is the area wasted when a task does not utilize the full
height of the task area. The second type of fragmentation

1394 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 11, NOVEMBER 2004

Fig. 1. Reconfigurable resource models: (a) 1D area model; (b) 2D area model.

Authorized licensed use limited to: University of Florida. Downloaded on March 19, 2009 at 17:21 from IEEE Xplore. Restrictions apply.

arises when the remaining free area is split into several
small but unconnected vertical stripes. External fragmenta-
tion can prevent the placement of further tasks although
sufficient free area exists.

The more complex 2D area model allows us to allocate
tasks anywhere on the hardware task area and suffers less
from external fragmentation. Consequently, a higher device
utilization can be expected. On the other hand, the high
flexibility of this model makes scheduling and placement
rather involved.

Formally, a task Ti is modeled as a rectangular area of
reconfigurable units given by its width and height, wi ! hi.
Tasks arrive at arbitrary times ai. Real-time tasks require
execution times ei and carry deadlines di; di " ai þ ei. The
hardware task area of the reconfigurable device is modeled
as a rectangular area W !H of reconfigurable units.

2.2 Related Work
A substantial body of work has been done in offline
optimization of reconfigurable embedded systems. Exam-
ples are temporal partitioning for nonpartially reconfigur-
able systems, e.g., by Purna and Bhatia [12], or 3D placement
of tasks in time and space dimensions for partially
reconfigurable devices, e.g., by Fekete et al. [13]. In an
offline scenario, one can afford to spend the time to derive
optimal or near-optimal solutions. In contrast, operating
systems work on online scenarios and require efficient
algorithms.

Brebner [7], [14] was among the first to propose an
operating system approach for partially reconfigurable
hardware. He defines swappable logic units (SLUs), which
are position-independent tasks that are swapped in and out
by the operating system. Jean et al. [15] discuss an online
scenario where a resource manager schedules arriving tasks
to a farm of FPGAs. Since each task occupies exactly one
FPGA, there is no partial reconfiguration and placement is
not an issue. Merino et al. [16], [17] split the reconfigurable
surface into an array of predefined subareas, so-called slots.
The operating system schedules tasks to these slots based
on a task allocation table that keeps track of currently
loaded tasks. As each task fits into one slot, there is again no
placement problem involved. Simmler et al. [18] discuss
task switching in a preemptive environment. The authors
further propose critical sections, i.e., periods of time during
which a task must not be preempted. However, their device
is not partially reconfigured. Burns et al. [19] describe
several operating system functions, including a 2D trans-
form manager that performs translation and rotation
operations on tasks to better fit them to the device. Shirazi
et al. [20] propose three runtime modules, a monitor, a
loader, and a configuration store, to manage reconfigurable
designs. The authors discuss trade offs between reconfi-
guration time and circuit quality depending on the
reconfiguration method used and information about the
configuration sequence that is available at compile time.

Several authors have addressed the problem of external
fragmentation and tackled it by compaction, i.e., rearranging
executing tasks in order tomaximize the contiguous free area.
While these techniques increase the chance of successful
future placements, compaction requires preemptive systems
and can delay task execution for a considerable period of
time. Diessel et al. [21], [22] investigate compaction in the
2D area model. They perform task rearrangement by

techniques denoted as local repacking and ordered compac-
tion. Compton et al. [10], [23] discuss task relocations and,
additionally, task transforms to reduce fragmentation. Task
transforms consist of a series of rotation and flip operations.
The authors also propose a novel FPGA architecture that
supports efficient row-wise relocation. A different compac-
tion approach for the 1D area model is presented by Brebner
and Diessel in [24], where an FPGA itself contains circuitry
that determines the relocation positions.

The problem of placement in the 2D area model has been
addressed by Barzagan et al. [25]. The authors investigate
efficient data structures and algorithms for fast online
placement. Simulation experiments for variants of first-fit,
best-fit, and bottom-left bin-packing algorithms are con-
ducted. The 2D placer we use in this paper relies on our
previous improvements [26] of the work of Bazargan et al.
Further, we have also experimented with the placement of
tasks that consist of a number of rectangular subtasks [11].
Such shapes result naturally from a core-oriented design
style and can be modified by footprint transforms, i.e., by
arranging the subtasks differently.

Recent work in reconfigurable hardware operating
systems has covered a broader range of runtime function-
alities as well as prototype construction. Wigley and
Kearney [27] identify a set of services that should be offered
by reconfigurable operating systems, including partition-
ing, allocation, placement, and routing. Mignolet et. al [9]
present a networked reconfigurable platform for multi-
media appliances that enables multitasking in hardware
and software. In [28], the authors discuss interconnection
networks on reconfigurable devices. Design issues for a
reconfigurable hardware operating system have been
presented in [29] and a prototype implementation in [5].

Like some of the related work, the main part of this
paper addresses online task and resource management for
partially reconfigurable devices. This work is an extension
of a previously published conference contribution [30]. The
difference from related work is that we target a real-time
scenario where each incoming task is either accepted with a
guarantee to meet the deadline or rejected. For such a
scenario, we compare different scheduling heuristics under
both the 1D and 2D area models. The feasibility of the
1D area model is backed by our prototyping work on Xilinx
Virtex technology. The 2D model is not enabled by
currently available FPGA technology. Despite this fact, the
2D area model is very popular and has often been used in
related work.

2.3 Limitations of Current Technology
The main abstraction is that tasks are modeled as
relocatable rectangles that can be placed anywhere on the
device in the 2D area model and anywhere along the
horizontal device dimension in the 1D area model. While
the latest FPGA design tools [31] allow us to constrain tasks
to rectangular areas at the price of some internal fragmenta-
tion, the relocatability raises a number of questions. These
questions concern the device homogeneity, task commu-
nication and timing, and the partial reconfigurability.

The placement and scheduling algorithms of the runtime
system assume homogeneous reconfigurable devices,
which is in contrast to modern FPGAs that contain special
resources such as dedicated memories and embedded
multipliers [1]. Although these special resources are

STEIGER ET AL.: OPERATING SYSTEMS FOR RECONFIGURABLE EMBEDDED PLATFORMS: ONLINE SCHEDULING OF REAL-TIME TASKS 1395

Authorized licensed use limited to: University of Florida. Downloaded on March 19, 2009 at 17:21 from IEEE Xplore. Restrictions apply.

distributed over the array of logic blocks, they are not
available at every location on the device. This limits the
relocatability of hardware tasks. However, an operating
system takes many of these resources (e.g., dedicated
memories) away from the user tasks and puts them under
operating system control. The operating system uses these
memories to implement memory objects such as FIFO
queues, mailboxes, and memory maps. Tasks must use
predefined interfaces to access these objects [9], [8]. Further,
the placement algorithms used in this paper can be easily
extended to handle placement constraints, e.g., to relocate
tasks at different levels of granularity or even to place some
tasks at fixed positions. The basic problems and approaches
will not change, but the resulting performance will.

Arbitrarily relocated tasks that communicate with each
other and with I/O devices require online routing and
online delay estimation of their external signals, neither of
which is sufficiently supported by current tools. Some
prototypes [9], [8] overcome this problem by resorting to a
slightly different 1D area model that partitions the
reconfigurable surface into a number of fixed-size slots
[16]. The operating system provides predefined and static
communication interfaces to these slots. In our recent
prototype [32], we rely on a communication infrastructure
that enables variable-sized slots. The problems of online
delay estimation are avoided by using asynchronous
communication protocols for task communication and I/O.

For the 2D area model, communication is an unresolved
issue. Related work mostly assumes that sufficient re-
sources for communication are available [22] or that tasks
communicate via configuration and readback (which is
feasible but presumably inefficient) or propose to leave
some space between tasks and perform online routing of
communication channels.

The partial reconfiguration capabilities of the Xilinx
Virtex FPGA family, which reconfigures a device in vertical
chip-spanning columns, perfectly fits the 1D area model.
While the implementation of a somewhat limited 2D area
model on the same technology seems to be within reach,
ensuring the integrity of nonreconfigured device areas
during task reconfiguration is cumbersome.

In summary, given current technology, the 1D area
model is realistic, whereas the 2D model faces unresolved
issues. Most of the related work on 2D area models targets
the (meanwhile withdrawn) FPGA series Xilinx XC6200 that
is reconfigurable on the level of single logic blocks and has a
publicly available bitstream architecture. Requirements for
future devices supporting the 2D area model include block-
based reconfiguration and a built-in communication net-
work that is not affected by user logic reconfigurations. As
we will show in this paper, the 2D area model has great

advantages over the 1D area model in terms of scheduling
performance. For these reasons, we believe that it is
worthwhile to investigate and develop algorithms for both
the 1D and 2D area models.

3 PRACTICAL OPERATING SYSTEM DESIGN

This section briefly overviews our work toward a practical
realization of a reconfigurable hardware operating system.
We discuss the considered target architecture, the partition-
ing of the reconfigurable resource, and the main operating
system modules. More detailed descriptions of our operat-
ing system prototypes can be found in [8], [32]. The primary
purpose of this section is to show that the 1D area model is
realistic in current FPGA technology. This validates the
main part of this paper on scheduling real-time tasks.

3.1 Target Architecture
We consider the system architecture sketched in Fig. 2. A
partially reconfigurable device is coupled to a host CPU by
two bidirectional channels: The configuration and readback
port (C/R) gives the CPU complete control over the
configuration of the reconfigurable device, i.e., full and
partial configurations can be downloaded to the device and
full and partial device states can be read back. The
communication port (COMM) provides a number of gen-
eral-purpose signals between the host CPU and the reconfi-
gurable device. This port is used for connecting the operating
system functions mapped to the CPU and to the reconfigur-
able device. Both the CPU and the reconfigurable device
further connect to a number of external components Ci, such
as memories and I/O devices. The architectural concept of
Fig. 2 can be implemented by distinct CPU and RC devices or
as an integrated configurable system on a chip (CSoC).

3.2 Reconfigurable Resource Partitioning
We partition the reconfigurable area into two regions, the
operating system (OS) frames and the hardware task area. The
partitioning is shown in Fig. 3. The OS frames accommodate
functions that constitute the runtime part of the operating
system. These functions are required for task communica-
tion and I/O. The OS frames are static during the system’s
operation. As we target Xilinx Virtex technology, which is
partially reconfigurable in vertical chip-spanning columns,
the OS frames are positioned at the left and right device

1396 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 11, NOVEMBER 2004

Fig. 2. Target architecture comprising a host CPU, a reconfigurable

device (RC), and a number of external components Ci.

Fig. 3. Partitioning of the reconfigurable device into two static operating

system frames and a dynamic hardware task area.

Authorized licensed use limited to: University of Florida. Downloaded on March 19, 2009 at 17:21 from IEEE Xplore. Restrictions apply.

edges. The hardware task area accommodates the dynami-
cally allocated and loaded hardware tasks.

Task communication and I/O is established via the task
communication bus (TCB) that runs horizontally through
all hardware tasks and connects to both OS frames. As the
TCB must remain static during the system’s operation, we
divide the hardware task area into a number of dummy
tasks, as indicated in Fig. 3. Dummy tasks are placeholders
for hardware tasks. The width of a hardware task is an
integer multiple of the width of a dummy task. Each
hardware and dummy task has to implement a part of the
TCB. Our design tool flow automatically generates the
dummy tasks and provides the hardware task designer
with a VHDL wrapper that contains the TCB structure.
During the configuration of a hardware task, the other
loaded hardware tasks remain executing. Technically, we
implement the TCB by means of so-called bus macros [32],
which constrains task relocatability to a 4-RCU grid. Except
for this small modification, this area model matches the
1D area model discussed in Section 2.1.

Similar to a software task that calls kernel functions to
make use of operating system services, a hardware task
accesses a standard task interface (STI) to connect to the
reconfigurable hardware operating system. The STI provides
control and data ports. All hardware tasks that are managed
by the operating system must implement the same STI.

For prototyping reconfigurable hardware operating sys-
tems, we have developed the XF-Board [33], a platform that
employs a Xilinx Virtex-II XC2V3000 and a multitude of
memory and I/O connected to the left and right device edges.
The resource partitioning shown in Fig. 3 has been tested on
this prototype. The complete FPGA can be reconfigured in
19:88 ms; the smallest possible hardware task is configured in
1:42 ms. The CPU is implemented as a MicroBlaze soft CPU
core on a second FPGA, allowing for fast partial reconfigura-
tion. Xilinx’s ISE Foundation in combination with theModular
Design package [31] serve as development environment for
theOS frames and the hardware tasks. Our prototype runs an
embeddednetworking application that has beendescribed in
greater detail in [8]. The application is packet-based audio
streaming of encoded audio data (12kHz, 16bit, mono) with
an optional AES decoding. A receiver task checks incoming
Ethernet packets and extracts the payload to FIFOs. Then,
AES decryption and audio decoding tasks are started to
decrypt, decode, and stream the audio samples. The task
deadlines depend on the minimal packet interarrival time
and the FIFO lengths.

3.3 Operating System Modules
Fig. 4 presents the set of modules that provide the operating
system services. The modules are partitioned between the
CPU and the reconfigurable device. The CPU modules can
be categorized into three levels.

The highest level of modules is responsible for task and
resource management. The task scheduler decides on a
starting time for each task, based on some scheduling
policy. Scheduling policies can be offline or online. An
offline schedule is suitable for statically defined applica-
tions and is reflected by a rather simple task sequence table.
Online schedulers are priority-driven and split into non-
preemptive and preemptive schedulers. The resource man-
ager keeps track of all dynamically assigned resources, such
as the hardware task area and memory. The main

subfunction of the resource manager is the placer. Once
the task scheduler decides to execute a task, the placer is
responsible for providing a suitable free space in the
hardware task area.

The intermediate level of operating system modules
performs the handling of task bitstreams and tasks states.
The raw task repository stores task circuits in their raw form,
i.e., in a position-independent formwhich is generated by the
task design flow. Before a raw task can be downloaded to the
reconfigurable device, it must be relocated to a specific
location in the hardware task area. The context store holds the
task contexts that have previously been extracted from
preempted tasks. The task preparation unit (TPU) generates
and analyzes partial bitstreams that represent the tasks. The
lowest level of operating system modules on the CPU deals
with communication and configuration. Since both the CPU
and the reconfigurable device accommodate parts of the
operating system, a communication channel between the two
devices is required. The COMM driver establishes this
channel and allows the operating system modules to
exchange commands and data. The C/R driver provides
device-independent configuration and readback services to
the TPU. The services comprise full and partial configuration
as well as full and partial readback.

The operating systemmodules mapped to the reconfigur-
able device are comprised of the following units: The task
controller is the operating system’s counterpart of the
standard task interface and forms the connection between
operating system frames and hardware task area. There is
one task controller assigned to each task. The memory
management unit (MMU) offers memory services to the tasks,
such as FIFO queues with specific access modes (blocking/
nonblocking), private memory blocks, or shared memory
blocks. The memory structures are implemented with
internal block memories and externally connected memory
devices. Device drivers implement circuitry to control I/O

STEIGER ET AL.: OPERATING SYSTEMS FOR RECONFIGURABLE EMBEDDED PLATFORMS: ONLINE SCHEDULING OF REAL-TIME TASKS 1397

Fig. 4. Operating system modules mapped to the CPU and the

reconfigurable device.

Authorized licensed use limited to: University of Florida. Downloaded on March 19, 2009 at 17:21 from IEEE Xplore. Restrictions apply.

devices. Encapsulating I/O access in device drivers offers
similar advantages as in software operating systems: The
access functions are independent of the actual I/Odevice and
mutual exclusion issues can be resolved. All the operating
system modules on the reconfigurable device connect to the
modules mapped to the CPU via the OS bridge.

4 SCHEDULING REAL-TIME TASKS

Task and resource management play a major role in any
operating system. In partially reconfigurable hardware
platforms, the problems of task and resource management
are even more strongly connected than in processor-based
platforms, which makes the design of runtime systems
more challenging.

The task, device, and system models adopted in this
paper are motivated by our prototyping work on reconfi-
gurable hardware operating systems. Hardware tasks are
described as rectangular areas of reconfigurable units
(RCUs) with a given bound on the clock frequency. We
assume that the tasks have known execution times and
deadlines. The reconfigurable device is modeled as a
rectangular area of RCUs. We consider both the 1D and
2D area models. While the feasibility of the 1D area model is
validated by our prototyping work, the 2D area model is
not supported by current technology. The proposed
scheduling heuristics are applicable to both area models.
Hence, we use the same performance metric—the number
of accepted real-time tasks—for both models. The runtime
system does not preempt running tasks. Although preemp-
tion of hardware tasks has been practically demonstrated,
we omit such techniques here because configuration and
readback times can easily become dominating when a task
has either a short runtime or is preempted and resumed a
number of times. In summary, the problem we address is
the guarantee-based online scheduling of real-time tasks to
partially reconfigurable, nonpreemptive platforms.

In the remainder of this section, we first define the
1D variant of the considered online real-time scheduling
problem and present two fast heuristics to solve it. Then, we
show the extension of these techniques to the 2D area
model. After a discussion of the underlying placement
techniques, we finally address the relationship of our
scheduling problem to other online placement and schedul-
ing problems.

4.1 The Online Scheduling Problem
A task is characterized by its arrival time ai, execution time
ei, deadline di, width wi, and height hi. The online scheduler
tries to find a placement and a starting time for a newly
arrived task such that its deadline is met. In the 1D area
model, a placement for a task Ti is given by the x coordinate
of the leftmost task cell, xi, with xi þ wi $ W . The starting
time for Ti is denoted by si. Fig. 5a shows an example of a
device W !H ¼ 10! 8 cells with two placed tasks. Task T1

has the placement x1 ¼ 2; task T2 is placed at x2 ¼ 7. We
assume that the task’s height does not exceed the device’s
height, hi $ H; otherwise, the task cannot not be executed.
The main characteristic of scheduling to dynamically
reconfigurable devices is that a scheduled task has to
satisfy intertwined timing and placement constraints. We
denote the set of scheduled tasks at any point in time with
T . Initially, there are no scheduled tasks, T ¼ ;. A
scheduled task can be defined as:

Definition 1 (Scheduled Task ID). A scheduled task Ti is a
task with a placement xi and a starting time si such that:

1. 8Tj 2 T ; Tj 6¼ Ti:

½ðxi þ wiÞ $ xj) _½ xi " ðxj þ wjÞ)_
½ðsi þ eiÞ $ sj) _ ½si " ðsj þ ejÞ)

(scheduled tasks must not overlap in space and time).
2. si þ ei $ di (deadline must be met).

We consider an online hard real-time system that runs an
acceptance test for each arriving task. A task passing this
test is scheduled and thus guaranteed to meet its deadline.
A task failing the test is rejected by the scheduler in order to
preserve the schedulability of the currently guaranteed task
set. Accept/reject mechanisms are typically adopted in
dynamic real-time systems [34] and assume that the
scheduler’s environment can react properly on a task
rejection. A proper reaction is to migrate the task to a
different computing resource that executes the task with an
additional cost. The added cost can be seen as a penalty for
the scheduler; the corresponding scheduling goal is to
minimize the overall penalty. Such an approach has been
used by [25]. We consider a different model where a
rejected task leads to a denial of service. Applied to mobile
and wearable computing scenarios, this model means that
the requested functionality is not available at this time.

1398 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 11, NOVEMBER 2004

Fig. 5. Placement of rectangular tasks: (a) 1D area model; (b) 2D area model.

Authorized licensed use limited to: University of Florida. Downloaded on March 19, 2009 at 17:21 from IEEE Xplore. Restrictions apply.

Instead of assigning penalties, we set the scheduling goal to
minimize the number of rejected tasks.

Formally, the acceptance test is encapsulated into a
scheduling function !ðTiÞ:

!ðTiÞ ¼
accept with ðxi; siÞ
reject:

!
ð1Þ

The simplest online scheduling method is to check
whether a newly arrived task Ti finds an immediate
placement, i.e., si ¼ ai. If there is none, the task is rejected.
This crude technique will show low performance, but
greatly reduces the complexity of the scheduler-placer
interaction as it needs to know only about the current
device allocation. Despite its poor performance, we include
this method as a reference method in our experimentation.

Sophisticated online scheduling methods increase the
acceptance ratio by planning, i.e., looking into the future.
We may delay starting a task for its laxity (until
si*latest ¼ di * ei) and still meet its deadline. The time
interval ½ai; si*latest) is the planning period for a task Ti. At
each point in time, a planning scheduler manages two sets
of tasks: the set of tasks currently executing on the device
and the set of reserved tasks, i.e., tasks that have been
previously guaranteed but not yet started. Planning
techniques split into two groups. The first group are
schedulers that may rearrange already guaranteed tasks to
find guarantees for all these tasks plus the newly arrived
one. Such scheduling problems are known to be NP-hard.
Additionally, our scheduling policy poses the constraint
that previously guaranteed tasks must not be rejected, i.e., if
a task is to be rejected, it may only be the newly arrived one.
The second group are schedulers that try to fit the newly
arrived task into the set of already guaranteed tasks rather
than attempting to rearrange them. Schedulers of the
second group are potentially weaker in performance but
can be expected to lead to more efficient algorithms. As we
target online scenarios where the scheduling runtime is of
importance, we focus on planning techniques of the second
group. In the following sections, we discuss two such online
techniques, the horizon technique and the stuffing technique.

4.2 The 1D Horizon Technique

As any planning scheduler, the horizon scheduler maintains
an execution list and a reservation list. The execution list E
contains all currently executing tasks Ti with their finishing
times, fi ¼ si þ ei, and placements, xi. The list entries,
ðTi; xi; fiÞ, are sorted in order of increasing finishing times.
The reservation list R stores all scheduled but not yet
executing tasks. The list entries ðTi; xi; siÞhold theplacements
and starting times for the scheduled tasks. The reservation list
is sorted in order of increasing starting times.

In addition to the execution and reservation lists, the
horizon technique employs a third list, the scheduling
horizon H. The scheduling horizon consists of elements
hi ¼ ð½x1; x2) @ trÞ, where ½x1; x2) denotes an interval in the
device’s x-dimension and tr gives the maximum of the last
release time for this interval and the current time. The
intervals in the horizon fully partition the spatial resource
dimension. The horizon is sorted according to increasing
release times.

The pseudocode for the horizon scheduler is shown in
Algorithm 1. When a new task Ti arrives, the horizon

scheduler walks through the list of horizon intervals and
checks whether the task can be appended to the horizon. At
any point during this walk, the list L contains those
intervals of the horizon that are under consideration for
finding a placement. L is sorted according to increasing
x-coordinates and initialized with all horizon intervals at
the current time (line 2 of Algorithm 1). In line 4, the
function BestFitðÞ selects the interval from L with the
smallest width, among all intervals that are large enough to
accommodate Ti. The function BestFitðÞ returns either an
empty set when no such interval is found or the placement x
for Ti. When a suitable interval is found, the task is
scheduled to placement x and starting time t and the
planning process stops. Otherwise, the scheduler proceeds
to the next horizon interval. In line 10, the function
MergeIntervalsðÞ tries to merge adjacent horizon intervals
to form larger intervals.

Algorithm 1: 1D Horizon Scheduler !1D*horizonðTi;HÞ
1. t ai
2. L horizon intervals with tr ¼ t
3. while ðt $ si*latestÞ do
4. x ¼ BestFitðL;wiÞ
5. if x 6¼ ; then
6. add reservation ðTi; x; tÞ
7. return(ACCEPT)
8. end if
9. t tr of the next horizon interval
10. L MergeIntervalsðL;H; tÞ
11. end while
12. return(REJECT)

At each time tx, the online method first checks for
terminating tasks, i.e., tasks with finishing times fi ¼ tx, and
removes them from the execution list. Then, waiting tasks
with si ¼ tx are started and moved from the reservation list
to the execution list. Finally, for each newly arrived task Ti,
the scheduling function !1D*horizonðTi;HÞ is called which
either rejects the task or accepts it.

Table 1 shows an example for a task set consisting of
seven tasks. The resulting schedule under the 1D horizon
method on a device of dimensions W !H ¼ 10! 6 RCUs
are displayed in Fig. 6. The scheduling horizon and the

STEIGER ET AL.: OPERATING SYSTEMS FOR RECONFIGURABLE EMBEDDED PLATFORMS: ONLINE SCHEDULING OF REAL-TIME TASKS 1399

TABLE 1
Example Task Set

The parameters ai, ei, di, and fi are given in time units; the widths wi

and heights hi are measured in reconfigurable units (RCUs).

Authorized licensed use limited to: University of Florida. Downloaded on March 19, 2009 at 17:21 from IEEE Xplore. Restrictions apply.

execution and reservation lists for t ¼ 0; 1; 2; 3 are depicted
in Fig. 7. At time t ¼ 2, two tasks (T1; T2) are executing on
the device and four tasks (T3; T4; T5; T6Þ hold reservations.
At time t ¼ 3, task T2 terminates, tasks T3 and T4 start, and
task T7 arrives with ða7; e7; d7; w7; h7Þ ¼ ð3; 2; 20; 3; 2Þ. The
planning period for T7 is ½a7; ðd7 * e7Þ) ¼ ½3; 18). The first
horizon interval to be checked is L ¼ f½10; 10)g at t ¼ 3,
which is too small to fit T7. The scheduler proceeds to t ¼ 8,
where two horizon intervals are merged to L ¼ f½9; 10)g,
which is too small again. The next check takes place at t ¼
18 with L ¼ f½4; 10)g, which allows us to accept T7 with the
reservation ðT7; 4; 18Þ. The finishing times for all tasks are
given in Table 1.

The horizon technique ensures that new tasks are only
inserted into the reservation list when they do not overlap
in time or space with other tasks in the list. The key to this is
that tasks can only be appended to the horizon. It is not
possible to schedule tasks before the horizon as the
scheduling procedure maintains no knowledge about the
time-varying allocation between the current time and the
horizon intervals. The advantage of this technique is that
maintaining the scheduling horizon is simple compared to
maintaining all future allocations of the device.

4.3 The 1D Stuffing Technique
The stuffing technique schedules tasks to arbitrary free
areas that will exist in the future, including areas that will
be used later by tasks currently in the reservation list.
Compared to the horizon technique, the stuffing technique
is more complex as it has to identify such potential
placements and to check these potential placements for
conflicts with existing reservations.

Besides the execution and reservation lists, the stuffing
scheduler employs a free space list F . The free space list is a
set of intervals ½x1; x2) that identify currently unused

resource intervals, sorted according to increasing x-coordi-
nates. The pseudocode for the stuffing scheduler is shown
in Algorithm 2. When a new task Ti arrives, the scheduler
starts walking through the task’s planning period, mimick-
ing all future allocations of the device by simulating future
task terminations and starts together with the underlying
free space management. In line 1 of Algorithm 2, the current
free space is copied to a simulated free space list, FS , which
is then modified during the scheduling process. At any
given time, the scheduler first checks for terminating tasks
(lines 4-6). Then, reserved tasks are started (lines 8-10). In
line 12, the function BestFitðÞ reports all intervals in the
simulated free space list that can accommodate Ti or the
empty set if no such interval exists. The reported intervals
are then checked for conflicts with existing reservations in
best-fit order. If an interval without conflict is found, Ti is
accepted and planning stops. Otherwise, the scheduler
proceeds to the next event.

Algorithm 2: 1D Stuffing Scheduler !1D*stuffingðTi; F Þ
1. FS F ; t ai
2. check TRUE
3. while ðt $ si*latestÞ do
4. for all Tj 2 E with ðfj ¼ tÞ do
5. TerminateTaskðTj; FSÞ
6. check TRUE
7. end for
8. for all Tj 2 R with ðsj ¼ tÞ do
9. StartTaskðTj; FSÞ
10. end for
11. if check then
12. X BestFitðFS; wiÞ
13. for all (x 2 X) do
14. if (ðx; t; xþ wi; tþ eiÞ is not conflicting any

reservation in R) then
15. add reservation ðTi; x; tÞ to R
16. return(ACCEPT)
17. end if
18. end for
19. check FALSE

1400 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 11, NOVEMBER 2004

Fig. 6. Schedule for the task set of Table 1 under the 1D horizon

technique and a device of dimensions 10! 6 RCUs.

Fig. 7. Scheduling horizon H, execution list E, and reservation list R for
the task set of Table 1 under the 1D horizon technique and a device of
dimensions 10! 6 RCUs.

Authorized licensed use limited to: University of Florida. Downloaded on March 19, 2009 at 17:21 from IEEE Xplore. Restrictions apply.

20. end if
21. t next event from E [R
22. end while
23. return(REJECT)

At each time tx, the online method first checks for
terminating tasks, i.e., tasks with finishing times fi ¼ tx, and
removes them from the execution list. Then, waiting tasks
with si ¼ tx are moved from the reservation list to the
execution list and are started. Finally, for each newly
arrived task Ti, the scheduling function !1D*stuffingðTi; F Þ is
activated which either rejects the task or moves it to the
reservation list. On all three events, the free space list is
updated and adjacent free intervals are merged to form
larger free intervals.

Fig. 8 shows the resulting schedule for the task set of
Table 1 under the 1D stuffing method on a device of
dimensions W !H ¼ 10! 6 RCUs. When task T7 arrives at
t ¼ 3, the free space list consists of one free interval,
FS ¼ fð½9; 10)Þg, which is too small to fit T7. In the course of
planning, the free space list is modified to FS ¼ f½10; 10)g at
t ¼ 6 and FS ¼ f½7; 10)g at t ¼ 8. At this point, there exists
an interval that can accommodate T7 and does not conflict
with any reserved task. Hence, T7 is scheduled to placement
x7 ¼ 7 and starting time s7 ¼ 8.

The stuffing technique leads to improved performance
over the horizon method, as shown in Table 1. The
drawback of the stuffing method is the increased complex-
ity as we need to simulate future task terminations and
planned starts to identify free space.

4.4 Extension to the 2D Area Model
The scheduling problem and the heuristics discussed so far
extend naturally to the 2D area model. A 2D placement can
be given by the coordinates of the top-left task cell, ðxi; yiÞ,

with xi þ wi $ W and yi þ hi $ H. Fig. 5b shows an
example of a device W !H ¼ 10! 8 cells with two placed
tasks. Task T1 has the placement ðx1; y1Þ ¼ ð3; 4Þ; task T2 is
placed at ðx2; y2Þ ¼ ð8; 2Þ. Accordingly, the definition of a
scheduled task in the 2D area model extends to:

Definition 2 (Scheduled Task 2D). A scheduled task Ti is a
task with a placement ðxi; yiÞ and a starting time si such that:

1. 8Tj 2 T ; Tj 6¼ Ti:

½ðxi þ wiÞ $ xj) _ ½ðxi " ðxj þ wjÞ)_
½ðyi þ hiÞ $ yj) _ ½ðyi " ðyj þ hjÞ)_
½ðsi þ eiÞ $ sj) _ ½ðsi " ðsj þ ejÞ)

(scheduled tasks must not overlap in space and time).
2. si þ ei $ di (deadline must be met).

Formally, the acceptance test is encapsulated into a
2D scheduling function !ðTiÞ:

!ðTiÞ ¼
accept with ðxi; yi; siÞ
reject:

!
ð2Þ

Switching from the 1D to the 2D area model mainly
affects the management of free space which is done by the
placer. The scheduling techniques remain basically un-
changed. In the following, we detail the extension of the
horizon technique to the 2D area model. The stuffing
technique is extended accordingly.

Like the 1D variant, the 2D horizon technique uses three
lists. The execution list E contains all currently executing
tasks Ti with their finishing times fi ¼ si þ ei and placements
ðxi; yiÞ, sorted in order of increasing finishing times. The
reservation list R stores all scheduled but not yet executing
tasks with their placements ðxi; yiÞ and starting times si,
sorted in order of increasing starting times. The scheduling
horizon H in the 2D area model is a list of elements
hi ¼ ð½ðx1; y1Þ; ðx2; y2Þ) @ trÞ, where ½ðx1; y1Þ; ðx2; y2Þ) denotes
a rectangle on the device’s surface and tr gives the
maximum of the last release time for this rectangle and
the current time. The rectangles in the horizon fully
partition the spatial resource. The horizon is sorted
according to increasing release times.

Compared to the 1D version, the 2D horizon scheduler
works with rectangles instead of intervals and with
2D placements ðx; yÞ instead of 1D placements ðxÞ. The
function BestFitðÞ in Algorithm 1 selects the rectangle from
L with the smallest area among all rectangles that are large
enough to accommodate Ti. Instead of the function
MergeIntervalsðÞ, the function MergeRectanglesðÞ tries to
merge adjacent horizon rectangles to form larger rectangles.
There is a subtle difference between the 1D and 2D area
models with regard to this merging step. While merging
two adjacent intervals is a unique process, the placer has
several ways to merge adjacent rectangles. In fact, the
2D placers that have been proposed in related work differ
strongly in the way they manage the free space and
combine adjacent free rectangles (see Section 4.5).

Fig. 9 continues the example from Table 1 and presents
the execution list, the reservation list, and the 2D scheduling
horizon for t ¼ 0; 1; 2; 3. Each diagram of Fig. 9 displays
some of the lists graphically in a width-height diagram.
Fig. 9a shows the execution list at time t ¼ 0. Two tasks, T1

STEIGER ET AL.: OPERATING SYSTEMS FOR RECONFIGURABLE EMBEDDED PLATFORMS: ONLINE SCHEDULING OF REAL-TIME TASKS 1401

Fig. 8. Schedule for the task set of Table 1 under the 1D stuffing

technique and a device of dimensions 10! 6 RCUs.

Authorized licensed use limited to: University of Florida. Downloaded on March 19, 2009 at 17:21 from IEEE Xplore. Restrictions apply.

and T2, are executing.T1 has aplacement ð1; 1Þanda finishing
time f1 ¼ 20 and T2 has a placement ð4; 1Þ and finishing time
f2 ¼ 3, respectively. The finishing times are denoted by the
numbers in the task rectangles. Fig. 9b presents the schedul-
ing horizon, which consists of four list entries. The numbers
inside the rectangles denote the last release times. The
horizon rectangles ½ð1; 4Þ; ð3; 6Þ) @ 0Þ and ½ð4; 6Þ; ð10; 6Þ) @ 0Þ
are currently free rectangles. The horizon rectangles
½ð4; 1Þ; ð10; 5Þ) @ 3Þ and ½ð1; 1Þ; ð3; 3Þ) @ 20Þ represent the areas
currently occupied by executing tasks.

Apparently, there are several ways to partition the
current free area (e.g., given by horizon rectangles with
release time of 0 in Fig. 9b) into rectangles. This partitioning
(as well as the merging of free rectangles) is hidden in the
placer module and will be discussed in Section 4.5. The
chosen placement technique will strongly influence the
resulting scheduling performance and runtime. The sche-
duling algorithm, however, only requires a list of suitable
rectangles for a new task and does not have to know in
which way the placer manages the free area. In this sense,
the proposed scheduling heuristics are independent of the
actual placement techniques. At time t ¼ 1, the two tasks T3

and T4 arrive. Task T3 receives a reservation which is shown

as a shaded rectangle in Fig. 9d. The numbers in the shaded
rectangle denote the starting time of the corresponding task
and the last release time for the occupied rectangle,
respectively. Task T4 can be immediately placed and
executed. Fig. 9c displays the resulting execution list at
time t ¼ 1. Overall, the scheduling horizon now consists of
six rectangles. Fig. 9e and Fig. 9f show the lists at time t ¼ 2.
Tasks T5 and T6 have arrived. In the course of planning T5,
the scheduling algorithm found a rectangle of sufficient size
at t ¼ 3. Thus, T5 received the reservation ðT5; 7; 1; 3Þ.
Task T6 can be started immediately. The horizon at t ¼ 2
consists of nine rectangles overall. Finally, Fig. 9g and
Fig. 9h display the lists at time t ¼ 3. Task T2 has terminated
and all reserved tasks have been started. Additionally, the
newly arrived task T7 could be immediately placed and
started. Six tasks are executing in parallel at t ¼ 3.

The resulting task finishing times are given in Table 1. As
could be expected, the 2D area model leads to an improved
resource utilization. For the task set of Table 1, the finishing
times for the 2D stuffing technique and 2D horizon
technique are identical.

4.5 Placement Algorithms
The placer performs several functions. The basic function is
free space management, i.e., representing the unused area
of the reconfigurable device with a proper data structure.
When tasks start or terminate execution, the placer updates
this data structure to reflect the new allocation. When a task
arrives, the placer has to search for suitable free areas on the
device. The horizon technique further asks the placer to
merge adjacent free areas to larger ones to increase the
chances of finding suitable free areas. The stuffing
technique requires the placer to mimic future task starts
and terminations, which is done by regular task insert and
delete operations on a copy of the original data structure
(see Algorithm 2).

In the 1D area model, the placer manages free space by
lists of maximal free intervals, i.e., adjacent free intervals are
immediately merged. All placer operations described above
are therefore bound by OðnÞ, where n is the number of
currently placed tasks.

In the 2D area model, the placer works with lists of free
rectangles. Partitioning the free 2D space into free rectangles
can be done in several ways, as was discussed by Bazargan
et al. [25]. An approach that corresponds to the
1D placement is to manage the free space by a list of
maximal free rectangles. A maximal free rectangle is a
rectangle which is not contained in any other free rectangle.
In contrast to maximal free intervals, maximal free
rectangles are overlapping. For example, the free area in
Fig. 9b is defined by the two overlapping rectangles
½ð1; 4Þ; ð3; 6Þ) and ½ð1; 6Þ; ð10; 6Þ). For any given allocation,
the set of maximal free rectangles is unique and optimal in
the sense that the placer will find a suitable rectangle for an
arriving task if there is sufficient free space. Such a placer is
also called recognition-optimal [35]. However, the runtime
complexities of the placer operations have been shown to be
quadratic in the number of currently placed tasks [25].

A different approach to 2D placement is to partition the
free space into a set of nonoverlapping free rectangles. Such a
set is neither unique nor optimal in the previous sense. The
main advantage is that the number of free rectangles is
bound by OðnÞ, which can be expected to lead to efficient

1402 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 11, NOVEMBER 2004

Fig. 9. Execution lists E (a), (c), (e), (g) as well as scheduling horizonsH
and reservation lists R (b), (d), (f), (h) under the 2D horizon technique at
time t ¼ 0; 1; 2; 3 for the task set of Table 1 and a device of dimensions
10! 6 RCUs.

Authorized licensed use limited to: University of Florida. Downloaded on March 19, 2009 at 17:21 from IEEE Xplore. Restrictions apply.

online implementations. In this work, we employ placers
that work with nonoverlapping free rectangles, as shown in
Fig. 9. The used placement techniques originate from [25]
and have previously been improved by us [26].

All online schedulers discussed in this paper avoid
rescheduling of previously guaranteed tasks. Although we
sacrifice some performance by this restriction, we gain an
important benefit. As soon as a task is scheduled,we know its
definite placement. This allows the operating system to
perform the bitstream manipulations necessary to prepare
(relocate) the task for execution directly after its acceptance.
The relocation step can be done when the system is idle,
which helps reduce the operating system overhead for
multitasking.

4.6 Relation to Other Placement and Scheduling
Problems

The scheduling heuristics described in this paper are online
algorithms. Among the vast literature on online algorithms,
e.g., see [36] or [37], there are many online placement and
scheduling problems with which our work shares simila-
rities. However, our specific scheduling problem seems to
differ due to the specific task and system models and the
strong nexus between scheduling and placement. In the
following, we discuss the most important related problems.

Strip packing tries to place a set of two-dimensional boxes
into a vertical strip of width W by minimizing the total
height of the strip. Strip packing problems come in many
variations, including rotations of boxes, boxes with modifi-
able aspect ratios, tasks with gravity [37], and extensions to
higher dimensions. The offline strip packing problem is NP-
hard [38] and many approximation algorithms have been
developed for it. There are also some online algorithms with
known competitive ratios. Compared to our scheduling
problem, the width of the strip corresponds to the width of
the reconfigurable device and the vertical dimension
corresponds to the time. For the 2D area model, the
resulting scheduling problem relates to 3D strip packing
[13]. The crucial difference between our scheduling problem
and strip packing is that, in our problem, one of the
dimensions is the time which proceeds as tasks are arriving.
We cannot schedule tasks beyond the current timeline, i.e.,
into the past. In strip packing, the bottom of the container is
fixed and rectangles can be packed to any position of the
container anytime, provided there is sufficient free space.

In classical online processor scheduling, a processor
executes only one task at any given time and usually there
is no placement issue. In [39], competitive ratios for online
scheduling of nonpreemptive jobs with deadlines are
derived. Such a system and task model have applications
in admission control for high-speed networks. The only
resource is the processor and the objective is the maximiza-
tion of the total processor utilization rather than the
maximization of the number of tasks that meet their
deadlines. In [40], the online scheduling of tasks to a
system with a number of resources is considered. Resources
are grouped into active resources (e.g., processors) and
passive resources. Passive resources can be used in either
exclusive or shared mode. Similar to our approach, the tasks
have deadlines, the algorithms proposed are heuristics, and
the evaluation is done experimentally. In contrast to our
work, tasks can be preempted in case they are being
blocked on accesses to passive resources or tasks with

higher priority have to be executed. In the terminology of
[40], each of our hardware tasks requires a contiguous area of
reconfigurable units as an active resource.

Allocating and scheduling parallel tasks to 2D mesh-
connected multiprocessors is presumably the closest related
problem. The processors of a 2D mesh correspond to the
reconfigurable units (RCUs). A parallel task requires a
rectangular grid of processors (submesh), whereas a hard-
ware task requires a rectangular area of RCUs. Although
there exists a significant body of work in multiprocessor
allocation and scheduling, see, e.g., [35], there are the
following important differences from our work: First, our
hardware tasks must not be rotated and are not malleable.
Second, in the system described in this paper, hardware
tasks cannot be preempted or restarted. Third, most work in
mesh-connected multiprocessors concentrates on placement
rather than scheduling (which is mostly FIFO) and targets
general-purpose workloads with the goal of minimizing the
makespan or average response time. One recent publication
[41] considers mapping of real-time tasks onto a 2D parallel
computer. Task preemption is partly assumed and the
overall runtime complexity of the scheduling and place-
ment algorithm is too high for the application scenarios
considered in this work. The placement algorithms used in
mesh-connected multiprocessors are usually scanning ap-
proaches. The array of processors is scanned from bottom to
top and left to right and each element is considered a
potential placement. The main advantage of scanning
placers is that they are recognition-complete [35]. The draw-
back of the scanning placers is their high runtime complex-
ity. In the worst case, they have to considerW !H potential
placements, which makes them less attractive for online
scheduling. For partially reconfigurable devices and the
scenarios considered in this paper, two orders of magnitude
higher runtimes are observed in comparison with the
placement techniques used in this work.

5 EVALUATION

An efficient and accurate method to evaluate the perfor-
mance of the proposed scheduling techniques would be a
trace-based simulation. Unfortunately, such traces are not
available as reconfigurable hardware operating systems are
a new area where only first prototypes are being built. As a
consequence, we have to resort to the simulation of
randomly generated, i.e., synthetic, workloads. Anyhow,
we leverage on our experience with hardware tasks, the
operating system prototype, and case studies (see Section 3)
to derive realistic value ranges for the different parameters.
We consider coarse-grained hardware tasks in our work.
Examples for such tasks span from a simple UART with
50 RCUs over a DCT core with 600 RCUs to a 3-DES core
with 800 RCUs. The task execution times in our prototype
range from a few tens of ms to some hundred ms.

For evaluation, we have devised a discrete-time simula-
tion framework. The framework consists of several modules
such as the simulator kernel, the operating system modules
with hooks for different scheduling and placement func-
tions, a random task generator, a module for the collection
of execution statistics, and a graphical display of the current
allocation situation. The simulator can be parameterized to
model reconfigurable devices of different size and generate
random task sets with defined distributions. Simulation

STEIGER ET AL.: OPERATING SYSTEMS FOR RECONFIGURABLE EMBEDDED PLATFORMS: ONLINE SCHEDULING OF REAL-TIME TASKS 1403

Authorized licensed use limited to: University of Florida. Downloaded on March 19, 2009 at 17:21 from IEEE Xplore. Restrictions apply.

time proceeds in discrete time steps. For the simulation
experiments described here, we have neglected the run-
times of the online schedulers. In Section 5.2.3, we conduct
runtime measurements to justify this simplification.

5.1 Simulation Setup
We have run a number of simulation experiments with
different parameter settings. The results presented in this
section are typical and are based on following settings: The
simulated device consists of 96! 64 reconfigurable units
(Xilinx XCV1000). The task areas are uniformly distributed
in ½50; 500) reconfigurable units. The execution times are
uniformly distributed in ½5; 100) time units. We assume a
time unit of the discrete-time simulation to be 10 ms, which
results in execution times for the hardware tasks between
50 ms and 1 s. The aspect ratios are distributed between
½5; 0:2). We have defined three task classes, A;B;C, with
laxities uniformly distributed in ½1; 50), ½50; 100), and
½100; 200) time units, respectively.

The runtime measurements have been conducted on a
Pentium-III 1000MHz, taking advantage of Visual C++’s
profiling facilities. All the simulations presented below use a
95 percent confidence levelwith an error range of+3percent.

5.2 Results

5.2.1 Scheduling to the 1D Area Model
Fig. 10a compares the performance of the reference
scheduler with the performance of the horizon and the
stuffing techniques. The scheduling performance is mea-
sured by the percentage of rejected tasks, which is to be
minimized. Fig. 10a displays the scheduling performance of
the three schedulers for the three laxity classesA,B, andC.For
this experiment, the aspect ratios have been distributed such
that 50 percent of the tasks are taller than wide (standing
tasks) and 50 percent are wider than tall (lying tasks). The
reference scheduler does not plan into the future. Hence, its
performance is independent of the laxity class. As expected,
the stuffingmethodperformsbetter than thehorizonmethod,
which, in turn, is superior to the reference scheduler. The
differences between themethods growwith increasing laxity

because longer planning periods provide more opportunity
for improved scheduling. For laxity class C, the horizon
scheduler outperforms the reference scheduler by 14.46 per-
cent; the stuffing scheduler outperforms the reference
scheduler by 23.56 percent.

Fig. 10b shows the percentage of rejected tasks as a
functionof theaspect ratio,using laxity classB.For the1Darea
model, standing tasks are clearly preferable. The rightmost
data samples in Fig. 10b denote an all standing task set, i.e.,
the percentage of tasks with aspect ratio larger than 1 is
100 percent. The results demonstrate that all schedulers
benefit from standing tasks. The differences again growwith
the aspect ratio. For 100 percent standing tasks, the horizon
method results in a performance improvement of 32 percent
over the reference method, the stuffing method outperforms
the reference method even by 59 percent.

It has to be mentioned that a guarantee-based real-time
scheduling systemwith rejection ratios of some 40 percent, as
shown in Fig. 10, would be considered useless. We achieve
these high rejection ratios because we distribute the arrival
times of the tasks such that the schedulers are reasonably
loaded and the differences between the scheduling techni-
ques become visible. If the task interarrival times are long
compared to the task execution times, the device is mostly
unused and any scheduler will be able to accept the tasks.

The main conclusion from this simulation experiment is
the great influence of the aspect ratio distribution on the
performance of the schedulers. While all schedulers im-
prove with standing tasks, the stuffing schedulers gain
most. As a consequence for the 1D area model, the creation
of standing tasks must be facilitated during synthesis
whenever possible by providing proper placement and
routing constraints. If the creation of standing tasks is not
facilitated and we have to assume that some 50 percent of
the tasks are lying, planning schedulers are in vain and one
could resort to the simple reference method without too
much loss in performance.

1404 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 11, NOVEMBER 2004

Fig. 10. Scheduling performance of the proposed scheduling heuristics for the 1D area model: (a) scheduling performance as function of the laxity
class, 50 percent of the tasks have an aspect ratio larger than 1; (b) scheduling performance as function of the aspect ratio for laxity class B.

Authorized licensed use limited to: University of Florida. Downloaded on March 19, 2009 at 17:21 from IEEE Xplore. Restrictions apply.

5.2.2 Comparison of 1D and 2D Area Models
Fig. 11a compares the scheduling performance of the 1D
and 2D area models for the stuffing technique, depending
on the laxity class. The aspect ratios are distributed such
that 50 percent of the tasks are standing. The results clearly
show the superiority of the 2D area model. For laxity
class A, the performance improvement in going from 1D to
2D is 76 percent; for laxity class C, it raises to 98 percent.
Even for 100 percent standing tasks, the 1D stuffing method
stays above 10 percent rejected tasks (see Fig. 10b), whereas
the 2D stuffing method achieves a rejection ratio of less than
5 percent (see Fig. 11a). A further result which is not shown
in the figures is that the scheduling performance for the 2D
model depends only weakly on the aspect ratio distribution.
Due to the 2D resource management, both mixed and
standing task sets are handled equally well.

5.2.3 Runtime Efficiency
Fig. 11b presents the average runtime required to schedule
one task for both the 2D reference and 2D stuffing methods,
depending on the task laxities. The 2D stuffing scheduler is
the most complex of all implemented techniques. As
expected, the stuffing scheduler’s runtime increases with
the length of the planning period. However, with 1:8 ms, at
most the absolute values are small. In our simulation, we
assume a time unit of the discrete-time simulation to be
10 ms, which gives hardware tasks running from 50 ms to
1 s. The runtime overheads for the online scheduler (1:8 ms
at most) and for partial reconfiguration (in the order of a
few ms) are negligible and justify our simulation setup that
does not model these overheads.

6 CONCLUSION AND FURTHER WORK

In this paper, we have discussed design issues for
reconfigurable hardware operating systems and the pro-
blem of online scheduling hard real-time tasks to partially
reconfigurable devices. We have developed two online
scheduling heuristics that work for both the 1D and 2D area

models. Simulations have shown that the heuristics are
effective in reducing the number of rejected tasks. While the
1D schedulers strongly depend on the tasks’ aspect ratios,
the 2D schedulers do not. In all cases, the 2D area model
dramatically outperforms the 1D model. Finally, the
scheduler runtimes are so small that the more complex
stuffing technique will be the method of choice for most
application scenarios.

Further research activities could extend the scheduling
heuristics to include a broader range of task models. For
example, non-real-time tasks (i.e., tasks without deadlines)
and tasks with unknown execution times can easily be
handled by the scheduling algorithms. A task without a
deadline is assigned an infinite planning period; a task
without a bound on its execution time is assigned a release
time of infinity. Periodic tasks could be included by making
periodic reservations. This will severely compromise the
performance of the horizon technique because a periodic
reservation will shift the release time of the corresponding
horizon interval (rectangle) to infinity. The stuffing techni-
que, however, should be able to utilize the free areas
between subsequent invocations of a periodic task. Other
system models, such as preemptive real-time systems, soft
real-time systems, or non-real-time systems, will require
different scheduling techniques and performance metrics.

ACKNOWLEDGMENTS

This work was supported by the Swiss National Science
Foundation (SNF) under grant number 2100-59274.99.

REFERENCES

[1] Xilinx, Inc., “Virtex-II Pro Platform FPGAs: Complete Data Sheet,
November 11, 2003,”http://www.xilinx.com.

[2] Altera Corp., “Excalibur Device Overview, May 2002,”http://
www.altera.com.

[3] B.L. Hutchings and M.J. Wirthlin, “Implementation Approaches
for Reconfigurable Logic Applications,” Proc. Int’l Workshop Field-
Programmable Logic and Applications (FPL), pp. 419-428, 1995.

STEIGER ET AL.: OPERATING SYSTEMS FOR RECONFIGURABLE EMBEDDED PLATFORMS: ONLINE SCHEDULING OF REAL-TIME TASKS 1405

Fig. 11. (a) Scheduling performance of the 1D and 2D stuffing methods for different laxity classes, 50 percent of the tasks have an aspect ratio larger

than 1. (b) Runtimes of the reference and stuffing schedulers to schedule one task, depending on the laxity class.

Authorized licensed use limited to: University of Florida. Downloaded on March 19, 2009 at 17:21 from IEEE Xplore. Restrictions apply.

[4] C. Plessl, R. Enzler, H. Walder, J. Beutel, M. Platzner, L. Thiele,
and G. Tröster, “The Case for Reconfigurable Hardware in
Wearable Computing,” Personal and Ubiquitous Computing,
pp. 299-308, Oct. 2003.

[5] IMEC Interuniversity Micro Electronic Center, “T-ReCS Gecko,”
http://www.imec.be, year?

[6] S. Chakraborty, M. Gries, S. Künzli, and L. Thiele, “Design Space
Exploration of Network Processor Architectures,” Network Proces-
sor Design: Issues and Practices, Volume 1, pp. 55-89 Morgan
Kaufmann, Oct. 2002.

[7] G. Brebner, “A Virtual Hardware Operating System for the Xilinx
XC6200,” Proc. Int’l Workshop Field-Programmable Logic and
Applications (FPL), pp. 327-336, 1996.

[8] H. Walder and M. Platzner, “Reconfigurable Hardware Operating
Systems: From Concepts to Realizations,” Proc. Int’l Conf. Eng. of
Reconfigurable Systems and Algorithms (ERSA), pp. 284-287, 2003.

[9] J.-Y. Mignolet, S. Vernalde, D. Verkest, and R. Lauwereins,
“Enabling Hardware-Software Multitasking on a Reconfigurable
Computing Platform for Networked Portable Multimedia Appli-
ances,” Proc. Int’l Conf. Eng. of Reconfigurable Systems and
Algorithms (ERSA), pp. 116-122, 2002.

[10] K. Compton, Z. Li, J. Cooley, S. Knol, and S. Hauck, “Configura-
tion Relocation and Defragmentation for Run-Time Reconfigur-
able Computing,” IEEE Trans. Very Large Scale Integration (VLSI)
Systems, vol. 10, no. 3, pp. 209-220, June 2002.

[11] H. Walder and M. Platzner, “Non-Preemptive Multitasking on
FPGAs: Task Placement and Footprint Transform,” Proc. Int’l Conf.
Eng. of Reconfigurable Systems and Algorithms (ERSA), pp. 24-30,
2002.

[12] K. Purna and D. Bhatia, “Temporal Partitioning and Scheduling
Data Flow Graphs for Reconfigurable Computers,” IEEE Trans.
Computers, vol. 48, no. 6, pp. 556-564, June 1999.

[13] S. Fekete, E. Köhler, and J. Teich, “Optimal FPGA Module
Placement with Temporal Precedence Constraints,” Proc. Design
Automation and Test in Europe Conf. (DATE), pp. 658-665, 2001.

[14] G. Brebner, “The Swappable Logic Unit: A Paradigm for Virtual
Hardware,” Proc. IEEE Symp. FPGAs for Custom Computing
Machines (FCCM), pp. 77-86, 1997.

[15] J.S. Jean, K. Tomko, V. Yavagal, J. Shah, and R. Cook, “Dynamic
Reconfiguration to Support Concurrent Applications,” IEEE Trans.
Computers, vol. 48, no. 6, pp. 591-602, June 1999.

[16] P. Merino, J.C. Lopez, and M. Jacome, “A Hardware Operating
System for Dynamic Reconfiguration of FPGAs,” Proc. Int’l
Workshop Field Programmable Logic and Applications (FPL), pp. 431-
435, 1998.

[17] P. Merino, M. Jacome, and J.C. Lopez, “A Methodology for Task
Based Partitioning and Scheduling of Dynamically Reconfigurable
Systems,” Proc. IEEE Symp. FPGAs for Custom Computing Machines
(FCCM), pp. 324-325, 1998.

[18] H. Simmler, L. Levinson, and R. Männer, “Multitasking on FPGA
Coprocessors,” Proc. Int’l Conf. Field Programmable Logic and
Applications (FPL), pp. 121-130, 2000.

[19] J. Burns, A. Donlin, J. Hogg, S. Singh, M. de Wit, “A Dynamic
Reconfiguration Run-Time System,” Proc. IEEE Symp. FPGAs for
Custom Computing Machines (FCCM), pp. 66-75, 1997.

[20] N. Shirazi, W. Luk, and P. Cheung, “Run-Time Management of
Dynamically Reconfigurable Designs,” Proc. Int’l Workshop Field-
Programmable Logic and Applications (FPL), pp. 59-68, 1998.

[21] O. Diessel and H. ElGindy, “On Scheduling Dynamic FPGA
Reconfigurations,” Proc. Australasian Conf. Parallel and Real-Time
Systems (PART), pp. 191-200, 1998.

[22] O. Diessel, H. ElGindy, M. Middendorf, H. Schmeck, and B.
Schmidt, “Dynamic Scheduling of Tasks on Partially Reconfigur-
able FPGAs},” IEE Proc. Computers and Digital Techniques, vol. 147,
no. 3, pp. 181-188, May 2000.

[23] K. Compton, J. Cooley, S. Knol, and S. Hauck, “Configuration
Relocation and Defragmentation for Reconfigurable Computing,”
Proc. IEEE Symp. FPGAs for Custom Computing Machines (FCCM),
pp. 279-280, 2001.

[24] G. Brebner and O. Diessel, “Chip-Based Reconfigurable Task
Management,” Proc. Int’l Conf. Field Programmable Logic and
Applications (FPL), pp. 182-191, 2001.

[25] K. Bazargan, R. Kastner, and M. Sarrafzadeh, “Fast Template
Placement for Reconfigurable Computing Systems,” IEEE Design
and Test of Computers, vol. 17, no. 1, pp. 68-83, 2000.

[26] H. Walder, C. Steiger, and M. Platzner, “Fast Online Task
Placement on FPGAs: Free Space Partitioning and 2D-Hashing,”
Reconfigurable Architectures Workshop (RAW), Proc. Int’l Parallel and
Distributed Processing Symp. (IPDPS), 2003.

[27] G. Wigley and D. Kearney, “The Development of an Operating
System for Reconfigurable Computing,” Proc. IEEE Symp. FPGAs
for Custom Computing Machines (FCCM), 2001.

[28] T. Marescaux, A. Bartic, D. Verkest, S. Vernalde, and R.
Lauwereins, “Interconnection Networks Enable Fine-Grain Dy-
namic Multi-Tasking on FPGAs,” Proc. Int’l Conf. Field-Program-
mable Logic and Applications (FPL), pp. 795-805, 2002.

[29] V. Nollet, P. Coene, D. Verkest, S. Vernalde, and R. Lauwereins,
“Designing an Operating System for a Heterogeneous Reconfigur-
able SoC,” Reconfigurable Architectures Workshop (RAW), Proc.e Int’l
Parallel and Distributed Processing Symp. (IPDPS), 2003.

[30] C. Steiger, H. Walder, and M. Platzner, “Heuristics for Online
Scheduling Real-Time Tasks to Partially Reconfigurable Devices,”
Proc. Int’l Conf, Field Programmable Logic and Applications (FPL),
pp. 575-584, 2003.

[31] D. Lim and M. Peattie, “Two Flows for Partial Reconfiguration:
Module Based or Small Bit Manipulations,” XAPP 290, Xilinx,
2002.

[32] H. Walder and M. Platzner, “A Runtime Environment for
Reconfigurable Hardware Operating Systems,” Proc. Int’l Conf.
Field-Programmable Logic and Applications (FPL), 2004.

[33] H. Walder, S. Nobs, and M. Platzner, “XF-BOARD: A Prototyping
Platform for Reconfigurable Hardware Operating Systems,” Proc.
Int’l Conf. Eng. of Reconfigurable Systems and Algorithms (ERSA),
2004.

[34] G. Buttazzo, Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications. Kluwer, 2000.

[35] D. Feitelsen, “Job Scheduling in Multiprogrammed Parallel
Systems,” IBM Research Report, vol. RC 87657, Aug. 1997.

[36] A. Borodin and R. El-Yaniv, {Online Computation and Competitive
Analysis. Cambridge Univ. Press, 1998.

[37] J. Csirik and G. Woeginger, Online Algorithms: The State of the Art.
Springer-Verlag, 1998.

[38] B. Baker, E. Coffman, and R. Rivest, “Orthogonal Packings in Two
Dimensions,” SIAM J. Computing, no. 9, pp. 846-855, 1980.

[39] S.A. Goldman, J. Parwatika, and S. Suri, “Online Scheduling with
Hard Deadlines,” J. Algorithms, vol. 34, pp. 370-387, 2000.

[40] W. Zhao, K. Ramamritham, and J.A. Stankovic, “Preemptive
Scheduling under Time and Resource Constraints,” IEEE Trans.
Computers, vol. 36, no. 8, pp. 949-960, Aug. 1987.

[41] S.-M. Yoo, H. Youn, and H. Choo, “Dynamic Scheduling and
Allocation in Two-Dimensional Mesh-Connected Multicomputers
for Real-Time Tasks,” IEICE Trans. Information and Systems,
vol. E84-D, no. 5, pp. 613-622, 2001.

Christoph Steiger received the degree in
computer science from the Swiss Federal
Institute of Technology (ETH), Zurich, Switzer-
land, in 2002. In his final thesis, he worked on
task scheduling and placement algorithms for
partially reconfigurable devices, a topic which
was pursued further in a stay as a research
associate at ETH Zurich. In 2003, he joined the
European Space Operations Centre (ESOC) of
the European Space Agency (ESA), Darmstadt,

Germany, where he is working for the ROSETTA mission to comet 67P/
Churyumov-Gerasimenko, launched in March 2004. He currently holds
responsibility for maintenance and operations of the ROSETTA flight
software as a member of the Flight Control Team, as well as contributing
to advanced flight software research projects of ESA. His research
interests include reconfigurable computing, spacecraft software in
general, and flight software operations automation in particular.

1406 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 11, NOVEMBER 2004

Authorized licensed use limited to: University of Florida. Downloaded on March 19, 2009 at 17:21 from IEEE Xplore. Restrictions apply.

Herbert Walder received the Dipl. El.-Ing.
degree in electrical engineering from the Swiss
Federal Institute of Technology (ETH), Zurich,
Switzerland, in 1995. From 1995 to 2000, he
held several positions in the defense and
telecommunication industries, ranging from
HW/SW development and operational process
optimizations and engineering to security and
fraud management. In 2000, he joined the
Computer Engineering and Networks Labora-

tory at ETH, where he started his PhD studies in the field of
reconfigurable computing. His research interests are in operating
system design for partially reconfigurable devices and cover conceptual,
algorithmic as well as practical and experimental levels. He is a member
of the IEEE.

Marco Platzner received the Dipl.-Ing. and the
PhD degrees in telematics from Graz University
of Technology, Graz, Austria, in 1991 and 1996,
respectively. From 1991 to 1996, he was with
the Institute for Technical Informatics, Graz
University of Technology, where he worked on
embedded multiprocessors for simulation and
digital signal processing applications. From 1996
to 1998, he held a postdoctoral researcher
position at GMD—German National Research

Center for Information Technology, St. Augustin, Germany, where he
developed a robot vision system for autonomously moving vehicles.
From 1997 to 1998, he was a visiting scholar at the Computer Systems
Laboratory (CSL), Stanford University, Stanford, California, where he
started working on reconfigurable computing systems. In 1998, he
joined the Computer Engineering and Networks Laboratory at the Swiss
Federal Institute of Technology (ETH) Zurich, where he leads several
projects in the area of reconfigurable systems. His current research
interests include reconfigurable computing, hardware-software code-
sign, and embedded systems. He is a member of the IEEE and the IEEE
Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

STEIGER ET AL.: OPERATING SYSTEMS FOR RECONFIGURABLE EMBEDDED PLATFORMS: ONLINE SCHEDULING OF REAL-TIME TASKS 1407

Authorized licensed use limited to: University of Florida. Downloaded on March 19, 2009 at 17:21 from IEEE Xplore. Restrictions apply.

